Изменчивость и её формы

Изменчивость - свойство организмов приобретать новые признаки и особенности индивидуального развития под влиянием среды. Различают онтогенетическую, модификационную и генотипическую изменчивость.
Онтогенетическая изменчивость - это реализация нормы реакции организма во времени, в ходе его индивидуального развития.
Модификационная изменчивость - это способность организма реагировать на условия окружающей среды, изменяться в пределах нормы реакции организма.
Наследственная изменчивость - это способность к изменению самого генетического материала.
При всех формах изменчивости имеется генетический контроль и о происшедших изменениях можно судить лишь по фенотипу (по изменению признаков и свойств организма).

I. Онтогенетическая изменчивость
Онтогенетическая изменчивость проявляется в виде постоянного изменения признаков в процессе развития особи. Все признаки и свойства наследственно-детерминированы, но формирование фенотипа организма обусловлено взаимодействием генотипа и среды. Генотип определяет спектр возможных фенотипов, это фенотипическое разнообразие называется нормой реакции генотипа.



однонаправленную реакцию организмов. Модификации развиваются в естественных условиях среды и подвергаются действию факторов, много раз встречавшихся в процессе филогенеза, то есть норма реакции складывалась исторически.
Модификации, напоминающие проявления мутаций известных генов, называются фенокопии. Они сходны с мутациями, но механизм их возникновения различен (катаракта может быть следствием как мутации, так и фенокопией).
Модификации имеют приспособительное значение и способствуют адаптации организма к условиям окружающей среды, сохраняют гомеостаз организма.
Изучение модификационной изменчивости проводится с помощью близнецового метода (соотносительная роль наследственности и среды в развитиии признака) и метода вариационной статистики (изучение количественных признаков).

III. Генотипическая изменчивость
Генотипическая изменчивость связана с качественными и количественными изменениями наследственного материала. Она включает комбинативную и мутационную изменчивость.
1. Комбинативная изменчивость. Уникальность каждого генотипа обусловлена комбинативной изменчивостью, которая определяется новыми сочетаниями аллелей генов в генотипе. Достигается это в результате 3-х процессов: два из них связаны с мейозом, третий - с оплодотворением.
2. Мутационная изменчивость. При мутационной изменчивости нарушается структура генотипа, что вызвано мутациями. Мутации - это качественные, внезапные, устойчивые изменения в генотипе.
Существуют различные классификации мутаций.
- по уровню изменения наследственного материала (генные, хромосомные, геномные);
- по проявлению в фенотипе (морфологические, биохимические, физиологические);
- по происхождению (спонтанные, индуцированные);
- по их влиянию на жизнь организма (летальные, полулетальные, условно летальные);
- по типам клеток (соматические и генеративные);
- по локализации в клетке (ядерные, цитоплазматические).
Генные мутации связаны с молекулой ДНК - нарушение нормальной последовательности нуклеотидов, свойственной данному гену. Это может быть вызвано изменением количества нуклеотидов (выпадением или вставкой) или их заменой по типу транзиций или трансверсий. Генные мутации могут приводить к изменению смысла кодонов (миссенс-мутации) или прекращению транскрипции (нонсенс-мутации и др.).
Мутации появляются в генотипе с определённой частотой и часто проявляются фенотипически. Некоторые из них являются причиной возникновения генных (молекулярных) болезней. В организме имеются механизмы,
ограничивающие неблагоприятный эффект мутаций: репарация ДНК, диплоидный набор хромосом, вырожденность генетического кода, повтор (амплификация) некоторых генов .
Хромосомные мутации (аберрации) заключаются в изменении структуры хромосом (внутрихромосомные и межхромосомные).
Внутрихромосомные мутации: дефишенси, делеции, дупликации, инверсии, инсерции, транспозиции. При делециях и дупликациях изменяется количество генетического материала, а при инверсиях и транспозициях - его расположение. При межхромосомных мутациях происходит транслокация наследственного материала, обмен участками между негомологичными хромосомами.
Геномные мутации заключаются в изменении числа отдельных хромосом (гетероплоидия) или нарушении геномного числа хромосом (полиплоидия).
Хромосомные и геномные мутации являются причинами хромосомных болезней. Разработана система обозначений мутаций (Денверская и Парижская классификация).
Мутации имеют значение в онто- и филогенезе, они приводят к появлению новых свойств наследственного материала: генные - появлению новых аллелей, хромосомные аберрации - к образованию новых групп сцепления генов, геномные мутации - новых генотипов. Они обеспечивают фенотипическое разнообразие организмов (например, многократное мутирование одного гена приводит к образованию множественных аллелей, а сочетание различных аллелей одного гена в генотипе вызывает разнообразие генотипов и, соответственно фенотипов, что определяет гетерогенность и полиморфизм популяций).

IV. Мутагенез (мутационный процесс)
Мутационный процесс - процесс возникновения, формирования и реализации наследственных нарушений. Основой мутационного процесса являются мутации. Мутации происходят как в естественной среде обитания организмов, так и в условиях направленного воздействия мутагенами. В зависимости от этого различают спонтанный и индуцированный мутагенез.
Спонтанный мутагенез - это самопроизвольный процесс возникновения мутаций под влиянием естественных факторов среды. Существует несколько гипотез относительно генеза спонтанных мутаций: естественная радиация, наличие генов-мутаторов, определенное соотношение мутагенов и антимутагенов и др.По современным данным мутации возникают при нарушении процесса репликации и репарации ДНК.
Спонтанный мутационный процесс характеризуется определенной интенсивностью (частотой генных, хромосомных и геномных мутаций),
непрерывностью, ненаправленностью, отсутствием специфичности; он является одной из биологических характеристик вида (стабильность генотипа) и протекает постоянно. Частота спонтанных мутаций подвергается генному контролю (ферменты репарации) и параллельно влиянию естественного отбора (появление новых мутаций уравновешивается их элиминацией). Познание закономерностей спонтанного мутагенеза, причин его возникновения необходимо для создания специальных методов слежения за мутациями, чтобы контролировать их количество у человека.
Индуцированный мутагенез - возникновение мутаций под влиянием направленных специальных факторов внешней среды - мутагенов.
Способностью индуцировать мутации обладают различные мутагены физической, химической и биологической природы, которые вызывают соответственно радиационный, химический и биологический мутагенез.
Физические мутагены: ионизирующее излучение, ультрафиолет, температура и др. Ионизирующая радиация оказывает непосредственное действие на гены (разрыв водородных связей ДНК, изменение нуклеотидов), хромосомы (хромосомные аберрации) и геномы (изменение числа и наборов хромосом). Эффект радиации сводится к ионизации и образованию свободных радикалов. Разные формы живых организмов характеризуются различной чувствительностью к радиации.
Химические мутагены (лекарственные препараты, никотин, алкоголь, гербициды, пестициды, кислоты, соли и др.) вызывают генные, реже хромосомные мутации. Мутагенный эффект больше у тех соединений, которые способны взаимодействовать с ДНК в период репликации.
Биологические мутагены (вирусы, живые вакцины и др.) вызывают генные мутации и хромосомные перестройки. Мутагенный эффект избирателен в отношении отдельных генов.
При оценке индуцированных мутаций учитывают индивидуальный и популяционный прогноз. Все виды мутагенеза опасны при вовлечении больших популяций людей.
Для защиты живых организмов от поражающего действия мутагенов используются антимутагены, организуется комплексная система генетического мониторинга и химического скрининга.

V. Репарация генетического материала
ДНК отличается высокой стабильностью, которая поддерживается особой ферментативной системой, находящейся под генетическим контролем, она же принимает участие и в репарации. Многие повреждения ДНК, которые могли бы реализоваться в виде мутаций при действии сильных мутагенов, исправляются репаративными системами. М.Е. Лобашовым была выдвинута идея о физиологичности мутационного процесса, о возникновении мутации как многоступенчатом процессе. Формирование мутации складывается из первичного молекулярного повреждения ДНК, предмутационного состояния и стойкой мутации.
Известны 2 способа репарации, при которых исправляются однонитевые повреждения ДНК: дорепликативная (фотореактивация, темновая) и пострепликативная репарация.
Генетические различия в активности репарирующих ферментов определяют разную продолжительность жизни и устойчивость организмов к действию мутагенов и канцерогенов. У человека некоторые болезни (прогерия) связаны с нарушением процесса репликации и репарации ДНК. Моделью для изучения генетических механизмов репарации является заболевание –пигментная ксеродерма. Известно, что 90% мутагенов являются и канцерогенами. Существует несколько теоретических концепций (теорий) канцерогенеза: мутационная, вирусно-генетическая, концепция онкогена и др.

VI. Генетический мониторинг
Человек контактирует с разнообразными химическими веществами, проверить каждое на возможность мутагенного (канцерогенного) эффекта или генотоксичности не представляется возможным, поэтому проводится отбор определенных химических веществ для исследования на мутагенность.
Выбор того или иного вещества определяется:
- его распространением в среде обитания человека и контактом с ними большей части населения (лекарства, косметические средства,
продукты питания, пестиды и др.)
- структурным сходством с известными мутагенами и канцерогенами (нитрозосоединения, ароматические углеводороды ) Для исследования на мутагенность
- используется несколько тест-систем (около 20 из 100 имеющихся методов) т.к. нет универсального теста для выявления всех типов мутаций в половых и соматических клетках.
- применяется ступенчатость тестирования (в начале на микроорганизмах, дрозофиле и др. объектах и только потом в клетках человека. )
Иногда достаточно использование одной тест-системы, для выявления мутагенности вещества и соответственно невозможность его использования.
Генетический мониторинг - это система долговременных популяционных исследований по контролю за мутационным процессом у человека (слежение за мутациями). Он складывается из:
- химического скрининга - экспериментальной проверки мутагенности химических соединений (слежение за мутациями в тест-системах)
- прямого анализа частот генных мутаций
- феногенетического мониторинга.
При химическом скрининге используют 4 тест-системы, которые позволяют учесть все типы генетических повреждений и составить представление о генетической активности веществ:
а) исследование генных мутаций у микроорганизмов с метаболической активацией
б) выявление доминантных летальных мутаций у мышей
в) цитологический анализ изменения хромосом (геномные и хромосомные мутации) в лимфоцитах человека
г) цитологический анализ изменения хромосом (геномные и хромосомные мутации) в костном мозге у млекопитающих.
Система тестирования состоит из просеивающей и полной программы, возможность их использования определяется степенью контакта населения с данным химическим веществом.

Bazzaeva A.V. 2013